Gearloose

Recruit
  • Posts

    4
  • Joined

  1. You can use a macro to activate all of your toggles, but it does it one at a time. So if your brute has 5 toggles, then you will need to hit the macro button 5 times. It does save space on the power tray(using 1 space for the macro instead of 5 for the toggles). So here it is:

    /macro Armor "powexec_toggleon Invincibility$$powexec_toggleon Temp Invulnerability&&powexec_toggleon Unyielding"

    This is just an example, you can change the name of the powers and add as many toggles as you want. The thing to remember is that the power on the far right gets toggled on first, so that is where I put the mez protection.
  2. As a side note, I am surprised that Scalars didn't catch on sooner. The existence of scalars has been public knowledge
    for quite some time. This quote is taken from an earlier City of Heroes Prima Guide. On the cover it reads Expanded Content
    Now covers Issue #1
    , and inside on the credits Many parts written by Jack Emmert. This is taken from a
    section on comparing power sets shared by 2 Archetypes.



    "...each power has a base scale for each effect it has, and those scales are multiplied by a factor
    determined by a character's Archetype and level.

    For example Brawl has a base scale of .36. When you Brawl, that base scale is multiplied by your character's
    level-specific, Archetype-specific factor for Melee Smashing to determine the actual damage your attack does.
    Since the level-specific, Archetype-specific factor for Melee Smashing is going to be higher for a Scrapper
    than a Controller, Scrappers will do more Brawl damage than Controllers of the same level. The reason the
    Scrapper's Melee Smashing is higher is because of an Archetype multiplier. That's how the differences are defined
    between the Archetypes for given effect types. Scrappers have a multiplier that's greater than 1, so they do
    more melee damage, while Controllers have a multiplier that's less than one, so they're not as effective in melee.

    Because the Resist Damage multiplier is higher for Tankers (x1.0) than it is for Scrappers (x0.75), powers
    that use this factor, such as the Invulnerability power set, will always be 25% more effective in the hands
    of a Tanker than a Scrapper. Similarly, because the Ranged Healing multiplier is higher for Defenders (x1.25)
    than it is for Controllers (x1.1), a Defender will always be 15% more effective with the Empathy ranged healing
    powers than a Controller with the same powers and at the same level.

    Given that these factors are associated with the Archetype, not the power set, it follows that pool powers are
    similarly modified. Leadership: Maneuvers and Fighting: Toughness will favor Defenders and Tankers (respectively),
    because they're modified by factors in which those Archetypes excel. Scrappers will always be more effective
    with powers like Fighting: Boxing than anyone else. In short, the name of the power set and the powers within
    it may be the same, but different Archetypes are differently effective in using them."
  3. The scalar is definitely a better method than the BI system, but we have too many charts
    for it to appeal to the masses. What we need is a way to simplify and compact the tables.

    We know that there is a base for each chart. Take melee damage for example. We know that
    Blasters are considered the base and has an AT Mod of 1. And we know that all other archetypes'
    melee damage can be expressed as a percent of Blaster (or base) damage. Why not throw out the
    other 11 columns and only keep the base.

    Modifier = Base - [Base * (1 - AT Mod) * Lvl Mod]

    With this equation, the AT Mod, and the Lvl Modifier (since levels 1-19 are skewed) we can
    completely recreate the Melee Damage table, with an error of plus or minus 0.01. Now if we
    were to start going through the ranged damage table, you will notice that ranged damage
    base = melee damage base. So we can get rid of 1 table.

    Something interesting happens when we look at the mez affects (stun, immobilize, sleep, fear).
    These tables are not skewed at levels 1 -19. So to reuse the same equation, for the mez affects
    the Lvl Mod is always equal to 1. This simplifies the equation:

    Mez Modifier = Base - [Base * (1 - AT Mod) * Lvl Mod]
    = Base - [Base * (1 - AT Mod) * 1]
    = Base - [Base * (1 - AT Mod)]
    = Base - [Base + (Base * AT Mod)]
    = Base - Base + (Base * AT Mod)
    = Base * AT Mod

    Now, if you look at the base for M Stun, R Stun, M Immob, R Immob, M Sleep, R Sleep, M Fear, and
    R Fear, you will see that they are all the same. That is 8 tables we can combine into 1. Now we
    can collect all of the base values into 1 table, and our AT modifiers into a second table. This
    greatly reduces the number of tables we have to reference.




    Table 1: Base Modifiers
    <font class="small">Code:[/color]<hr /><pre>

    level Lvl Mod HP M/R Dmg M/R KB Mez
    1 0.20 100.00 -10.00 1.0000 1.00
    2 0.21 110.50 -10.73 1.0317 1.01
    3 0.23 121.80 -11.50 1.0611 1.02
    4 0.25 133.93 -12.29 1.0885 1.03
    5 0.27 146.91 -13.11 1.1140 1.04
    6 0.30 160.77 -13.96 1.1378 1.05
    7 0.35 175.52 -14.84 1.1601 1.06
    8 0.40 191.19 -15.75 1.1810 1.07
    9 0.45 207.78 -16.68 1.2006 1.08
    10 0.50 225.30 -17.63 1.2193 1.09
    11 0.55 243.76 -18.61 1.2370 1.10
    12 0.60 263.15 -19.62 1.2539 1.11
    13 0.65 283.46 -20.64 1.2702 1.12
    14 0.70 304.67 -21.69 1.2859 1.13
    15 0.75 326.77 -22.76 1.3013 1.14
    16 0.80 349.73 -23.85 1.3163 1.15
    17 0.85 373.51 -24.96 1.3313 1.16
    18 0.90 398.08 -26.09 1.3461 1.17
    19 0.95 423.37 -27.23 1.3610 1.18
    20 1.00 449.34 -28.39 1.3759 1.19
    21 1.00 475.93 -29.56 1.3911 1.20
    22 1.00 503.06 -30.74 1.4066 1.21
    23 1.00 530.65 -31.93 1.4225 1.22
    24 1.00 558.63 -33.13 1.4388 1.23
    25 1.00 586.90 -34.33 1.4555 1.24
    26 1.00 615.36 -35.54 1.4728 1.25
    27 1.00 643.92 -36.75 1.4908 1.26
    28 1.00 672.47 -37.96 1.5093 1.27
    29 1.00 700.89 -39.16 1.5286 1.28
    30 1.00 729.08 -40.35 1.5485 1.29
    31 1.00 756.91 -41.53 1.5693 1.30
    32 1.00 784.27 -42.70 1.5907 1.31
    33 1.00 811.03 -43.84 1.6130 1.32
    34 1.00 837.07 -44.96 1.6360 1.33
    35 1.00 862.27 -46.05 1.6599 1.34
    36 1.00 886.52 -47.11 1.6845 1.35
    37 1.00 909.69 -48.13 1.7099 1.36
    38 1.00 931.66 -49.10 1.7361 1.37
    39 1.00 952.34 -50.03 1.7630 1.38
    40 1.00 971.60 -50.90 1.7907 1.39
    41 1.00 989.36 -51.72 1.8190 1.40
    42 1.00 1005.52 -52.46 1.8480 1.41
    43 1.00 1020.00 -53.14 1.8776 1.42
    44 1.00 1032.71 -53.74 1.9078 1.43
    45 1.00 1043.59 -54.26 1.9385 1.44
    46 1.00 1052.59 -54.70 1.9696 1.45
    47 1.00 1059.64 -55.05 2.0011 1.46
    48 1.00 1064.73 -55.30 2.0329 1.47
    49 1.00 1067.81 -55.46 2.0649 1.48
    50 1.00 1070.90 -55.61 2.0771 1.49
    </pre><hr />


    Table 2: Archetype Modifiers
    <font class="small">Code:[/color]<hr /><pre>
    Blaster Cntlr Dfndr Scrppr Tanker Pcbrgr Wrshd Brute Crrptr Dom MM Stalker
    Dmg Cap 5.000 4.000 4.000 5.000 4.000 4.000 4.000 8.500 4.000 4.000 4.000 5.000
    Def Cap
    Res Cap 0.750 0.750 0.750 0.750 0.900 0.850 0.850 0.900 0.750 0.750 0.750 0.750
    HP 1.125 0.950 0.950 1.250 1.750 1.000 1.000 1.400 0.950 0.750 0.950 1.000
    M Dmg 1.000 0.550 0.550 1.125 0.800 0.750 0.750 0.750 0.900 0.550 0.700 0.750
    R Dmg 1.000 0.550 0.650 0.500 0.500 0.625 0.625 0.500 0.600 0.550 0.650 0.750
    M Stun 0.800 1.250 1.000 0.800 0.800 0.900 0.900 0.800 0.800 1.000 1.000 0.800
    R Stun 0.800 1.250 1.000 0.800 0.800 0.900 0.900 0.800 0.750 1.000 1.000 0.800
    M Immob 0.800 1.250 1.000 0.800 0.800 0.900 0.900 0.800 0.800 1.000 1.000 0.800
    R Immob 0.800 1.250 1.000 0.800 0.800 0.900 0.900 0.800 0.800 1.000 0.800 0.800
    M Sleep 0.800 1.250 1.000 0.800 0.800 0.900 0.900 0.800 0.800 1.000 1.000 0.800
    R Sleep 0.800 1.250 1.000 0.800 0.800 0.900 0.900 0.800 0.800 1.000 0.800 0.800
    M Kb 1.000 1.000 1.000 1.000 1.250 1.000 1.000 1.250 1.000 1.000 1.000 1.000
    R Kb 0.800 1.000 1.000 1.000 1.250 0.900 0.900 1.250 0.800 1.000 0.800 1.000
    M Fear 0.800 1.250 1.000 1.000 1.000 0.900 0.900 1.000 0.800 1.000 1.000 1.000
    R Fear 0.800 1.250 1.000 1.000 1.000 0.900 0.900 1.000 0.800 1.000 0.800 1.000
    M Buff Def 0.070 0.090 0.100 0.075 0.100 0.075 0.075 0.075 0.075 0.090 0.085 0.085
    R Buff Def 0.065 0.075 0.100 0.065 0.065 0.075 0.075 0.065 0.065 0.075 0.075 0.075
    M Buff Dmg 0.125 0.080 0.100 0.125 0.100 0.090 0.090 0.100 0.100 0.080 0.085 0.085
    R Buff Dmg 0.070 0.100 0.125 0.070 0.070 0.090 0.090 0.070 0.070 0.075 0.075 0.100
    M Buff ToHit 0.075 0.080 0.100 0.100 0.100 0.090 0.090 0.100 0.100 0.080 0.085 0.085
    R Buff ToHit 0.070 0.100 0.125 0.070 0.070 0.090 0.090 0.070 0.070 0.075 0.075 0.100
    M DeBuff ToHit -0.070 -0.100 -0.125 -0.075 -0.070 -0.090 -0.090 -0.075 -0.075 -0.100 -0.100 -0.075
    R DeBuff ToHit -0.070 -0.100 -0.125 -0.070 -0.070 -0.090 -0.090 -0.070 -0.070 -0.075 -0.075 -0.100
    M Debuff Dmg -0.070 -0.100 -0.125 -0.075 -0.070 -0.090 -0.090 -0.075 -0.075 -0.100 -0.100 -0.075
    R Debuff Dmg -0.070 -0.100 -0.125 -0.070 -0.070 -0.090 -0.090 -0.070 -0.070 -0.075 -0.075 -0.100
    M Debuff Def -0.070 -0.100 -0.125 -0.075 -0.070 -0.090 -0.090 -0.075 -0.075 -0.100 -0.100 -0.075
    R Debuff Def -0.070 -0.100 -0.125 -0.070 -0.070 -0.090 -0.090 -0.070 -0.070 -0.075 -0.075 -0.100
    M Res Dmg 0.070 0.100 0.100 0.075 0.100 0.075 0.075 0.075 0.075 0.100 0.085 0.075
    R Res Dmg 0.065 0.075 0.100 0.065 0.065 0.075 0.075 0.065 0.065 0.075 0.075 0.075
    M End Drain 1.000 1.100 1.250 1.000 1.000 1.000 1.000 1.000 1.000 1.100 1.100 1.000
    R End Drain 1.000 1.100 1.250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.100
    M Slow -1.000 -1.250 -1.000 -0.800 -0.800 -1.000 -1.000 -0.800 -0.800 -1.000 -1.000 -1.000
    R Slow -1.000 -1.250 -1.000 -0.800 -0.800 -1.000 -1.000 -0.800 -0.800 -1.000 -1.000 -1.000 </pre><hr />